首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   9篇
  2023年   1篇
  2021年   9篇
  2020年   4篇
  2019年   4篇
  2018年   9篇
  2017年   8篇
  2016年   11篇
  2015年   8篇
  2014年   12篇
  2013年   12篇
  2012年   15篇
  2011年   10篇
  2010年   6篇
  2009年   1篇
  2008年   6篇
  2007年   1篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1979年   1篇
  1972年   1篇
排序方式: 共有138条查询结果,搜索用时 15 毫秒
71.
Colorectal cancer is (CRC) one of the leading causes of mortality and morbidity. Various genetic factors have been reported to be involved in the development of colorectal cancers including Axin gene. Axin, a major scaffold protein, plays an important role in various bio signaling pathways. We aim to study mutational pattern of Axin gene in colorectal cancer patients of Kashmiri population. The paired tumor and adjacent normal tissue specimens of 50 consecutive patients with CRC were used in our study. The DNA preparations were evaluated for the occurrence of Axin 1 and Axin 2 gene mutations by direct DNA sequencing. We analyzed exon 1a, 1b, 1c, 2, 4, 6, and 10 of Axin 1 and exon 7 of Axin 2. In this study, we found a novel mutation of G>T (GCT>TCT) transversion in exon 7 of Axin 2 gene at codon G695T (p.alanine >?serine) at a frequency of 6% (3/50). In the same exon of Axin 2 gene a single nucleotide polymorphism (SNP) was detected in codon L688L (CCT>CTT) at a frequency of 36% (18/50). In exon 1c of Axin 1 a SNP was detected at codon D726D (GAT>GAC) at a frequency of 62.5% (31/50). Both the SNPs were synonymous hence do not lead to change of amino acid. Although Axin 1 and Axin 2 gene mutations have been found to be involved in the development of colorectal cancers, it seems to be a relatively rare event in Kashmiri population. However, an interesting finding of this study is the novelty of Axin 2 gene mutations which may be a predisposing factor in ethnic Kashmiri population to CRC.  相似文献   
72.

Background

Muslims go through strict Ramadan fasting from dawn till sunset for one month yearly. These practices are associated with disturbed feeding and sleep patterns. We recently demonstrated that, during Ramadan, circadian cortisol rhythm of Saudis is abolished, exposing these subjects to continuously increased cortisol levels.

Hypothesis

Secretory patterns of other hormones and metabolic parameters associated with cortisol, and insulin resistance, might be affected during Ramadan.

Protocol

Ramadan practitioners (18 males, 5 females; mean age ±SEM = 23.16±1.2 years) were evaluated before and two weeks into Ramadan. Blood was collected for measurements of endocrine and metabolic parameters at 9 am (±1 hour) and again twelve hours later.

Results

In Ramadan, glucose concentration was kept within normal range, with a significant increase in the morning. Mean morning concentration of leptin was significantly higher than pre-Ramadan values (p = 0.001), in contrast to that of adiponectin, which was significantly lower (p<0.001). These changes were associated with increased insulin resistance in morning and evening. Concentrations of hsCRP were lower during Ramadan than those during regular living conditions, however, normal circadian fluctuation was abolished (p = 0.49). Even though means of liver enzymes, total bilirubin, total protein and albumin were all decreased during Ramadan, statistically lower means were only noted for GGT, total protein, and albumin (p = 0.018, 0.002 and 0.001 respectively).

Discussion

Saudi Ramadan practitioners have altered adipokine patterns, typical of insulin resistance. The noted decreases of hsCRP, liver enzymes, total protein, and albumin, are most likely a result of fasting, while loss of circadian rhythmicity of hsCRP is probably due to loss of circadian cortisol rhythm.

Conclusions

Modern Ramadan practices in Saudi Arabia, which are associated with evening hypercortisolism, are also characterized by altered adipokines patterns, and an abolished hsCRP circadian rhythm, all likely to increase cardiometabolic risk.  相似文献   
73.
Two new compounds, (+)-3,5,7-trihydroxy-3-[3′-hydroxy-2′,4′-dimethoxy-5-(3-methyl-2-butenyl)]-phenyl-(3R)-4H-1-benzopyran-4-one (1) and (?)-3-hydroxy-8,9-methylenedioxy-(6aR,11aS)-pterocarpan (2), were isolated from the methanolic extract of Sophora mollis subsp. griffithii. Two known compounds, β-sitosterol (3) and 19βH-lupeol-methyl-ether (4), were also obtained for the first time from this plant. The structures of 14 were identified through their spectroscopic data. CD Spectroscopy was also utilized for the structure elucidation of compounds 1 and 2. Compounds 1, 3 and 4 were studied for their effects on immune cells and only 1 was found to be substantially active.  相似文献   
74.
Microbial oils are considered as alternative to vegetable oils or animal fats as biodiesel feedstock. Microalgae and oleaginous yeast are the main candidates of microbial oil producers’ community. However, biodiesel synthesis from these sources is associated with high cost and process complexity. The traditional transesterification method includes several steps such as biomass drying, cell disruption, oil extraction and solvent recovery. Therefore, direct transesterification or in situ transesterification, which combines all the steps in a single reactor, has been suggested to make the process cost effective. Nevertheless, the process is not applicable for large-scale biodiesel production having some difficulties such as high water content of biomass that makes the reaction rate slower and hurdles of cell disruption makes the efficiency of oil extraction lower. Additionally, it requires high heating energy in the solvent extraction and recovery stage. To resolve these difficulties, this review suggests the application of antimicrobial peptides and high electric fields to foster the microbial cell wall disruption.  相似文献   
75.
Sustainable development of cellular organisms depends on a precise coordination between the carbon and nitrogen metabolisms within the living system. Inorganic N is assimilated into amino acids which serve as an important N source for various regulatory metabolic pathways in plants. This study investigates the role of amino acids in C/N balance by examining changes in amino acid profile in the leaves and roots of low-N-tolerant (PHEM-2) and low-N-sensitive (HM-4) maize genotypes grown hydroponically under N-sufficient (4.5 mM), N-deficient (0.05 mM) and N-restoration conditions. N application effectively altered the level of cysteine, methionine, asparagine, arginine, phenylalanine, glycine, glutamine, aspartate and glutamate in both genotypes. Under low N (0.05 mM), the asparagine and glutamine contents increased, while those of glutamate, phenylalanine and aspartate decreased in both genotypes. However, serine content increased in PHEM-2 but decreased in HM-4. Resupply of N to low-N-grown plants of both genotypes restored the amino acids level to that in the control; the restoration was quicker and more consistent in PHEM-2 than in HM-4. Based on alteration of amino acid level, a strategy can be developed to improve the ability of maize to adapt to low-N environments by way of an improved N utilization.  相似文献   
76.
77.
From the whole plant of Salvia aegyptiaca, 6-methylcryptoacetalide, 6-methyl-epicryptoacetalide and 6-methylcryptotanshinone have been isolated and characterized, mainly by spectroscopic means. In addition to these novel diterpenoids, the known compounds 3beta-hydroxy-olean-12-en-28-oic acid, 3beta-hydroxy-oleana-11,13(18)-dien-28-oic acid, sitosterol-3beta-glucoside, sitosterol, stigmasterol, 5-hydroxy-7,3',4'-trimethoxyflavone and 5, 6-dihydroxy-7,3',4'-trimethoxyflavone were isolated.  相似文献   
78.
The BRAF gene encodes for a serine/threonine protein kinase that participates in the MAPK/ERK signalling pathway and plays a vital role in cancers and developmental syndromes (RASopathies). The current review discusses the clinical significance of the BRAF gene and other members of RAS/RAF cascade in human cancers and RAS/MAPK syndromes, and focuses the molecular basis and clinical genetics of BRAF to better understand its parallel involvement in both tumourigenesis and RAS/MAPK syndromes—Noonan syndrome, cardio-facio-cutaneous syndrome and LEOPARD syndrome.  相似文献   
79.
The withanolides 1-3 and 4-5 isolated from Ajuga bracteosa and Withania somnifera, respectively, inhibited acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholinesterase (BChE, EC 3.1.1.8) enzymes in a concentration-dependent fashion with IC50 values ranging between 20.5 and 49,2 microm and 29.0 and 85.2 microm for AChE and BChE, respectively. Lineweaver-Burk as well as Dixon plots and their secondary replots indicated that compounds 1, 3, and 5 are the linear mixed-type inhibitors of AChE, while 2 and 4 are non-competitive inhibitors of AChE with K(i) values ranging between 20.0 and 45.0 microm. All compounds were found to be non-competitive inhibitors of BChE with K(i) values ranging between 27.7 and 90.6 microm. Molecular docking study revealed that all the ligands are completely buried inside the aromatic gorge of AChE, while compounds 1, 3, and 5 extend up to the catalytic triad. A comparison of the docking results showed that all ligands generally adopt the same binding mode and lie parallel to the surface of the gorge. The superposition of the docked structures demonstrated that the non-flexible skeleton of the ligands always penetrates the aromatic gorge through the six-membered ring A, allowing their simultaneous interaction with more than one subsite of the active center. The affinity of ligands with AChE was found to be the cumulative effects of number of hydrophobic contacts and hydrogen bonding. Furthermore, all compounds also displayed dose-dependent (0.005-1.0 mg/mL) spasmolytic and Ca2+ antagonistic potentials in isolated rabbit jejunum preparations, compound 4 being the most active with an ED50 value of 0.09 +/- 0.001 mg/mL and 0.22 +/- 0.01 microg/mL on spontaneous and K+ -induced contractions, respectively. The cholinesterase inhibitory potential along with calcium antagonistic ability and safe profile in human neutrophil viability assay could make compounds 1-5 possible drug candidates for further study to treat Alzheimer's disease and associated problems.  相似文献   
80.
The aim of the study was to investigate the feasibility of using irreversible electroporation (EP) as a microbial cell disruption technique to extract intracellular lipid within short time and in an eco‐friendly manner. An EP circuit was designed and fabricated to obtain 4 kV with frequency of 100 Hz of square waves. The yeast cells of Lipomyces starkeyi (L. starkeyi) were treated by EP for 2‐10 min where the distance between electrodes was maintained at 2, 4, and 6 cm. Colony forming units (CFU) were counted to observe the cell viability under the high voltage electric field. The forces of the pulsing electric field caused significant damage to the cell wall of L. starkeyi and the disruption of microbial cells was visualized by field emission scanning electron microscopic (FESEM) image. After breaking the cell wall, lipid was extracted and measured to assess the efficiency of EP over other techniques. The extent of cell inactivation was up to 95% when the electrodes were placed at the distance of 2 cm, which provided high treatment intensity (36.7 kWh m?3). At this condition, maximum lipid (63 mg g?1) was extracted when the biomass was treated for 10 min. During the comparison, EP could extract 31.88% lipid while the amount was 11.89% for ultrasonic and 16.8% for Fenton's reagent. The results recommend that the EP is a promising technique for lowering the time and solvent usage for lipid extraction from microbial biomass. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:838–845, 2018  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号